Chapter 8: Factoring Polynomials--Review

Multiple Choice
Identify the choice that best completes the statement or answers the question.

1. Find the prime factorization of 70.
 a. $2 \cdot 5$
 b. $2 \cdot 5 \cdot 7$
 c. $2^2 \cdot 3$
 d. $2^3 \cdot 5^2 \cdot 7^2$

2. Find the GCF of 48 and 72.
 a. 72
 b. 24
 c. 48
 d. 144

3. Find the GCF of $2m^5$ and $32m^4$.
 a. $32m^4$
 b. m^4
 c. $2m$
 d. $2m^4$

4. The brass section in a marching band has 24 trombone players and 56 trumpet players. The band director wants to arrange them into equal rows that have as many musicians as possible. However, all of the musicians in each row must play the same instrument. How many rows will there be?
 a. There will be 8 rows.
 b. There will be 10 rows.
 c. There will be 20 rows.
 d. There will be 3 rows.

5. The amount of paint needed to cover a wall is proportional to its area. The wall is rectangular and has an area of $4z^2 + 2z$ square meters. Factor this polynomial to find possible expressions for the length and width of the wall. (Assume the factors are polynomials.)
 a. $2z(2z + 1)$; possible dimensions: $2z$ meters by $(2z + 1)$ meters
 b. $2z^2(2z + 1)$; possible dimensions: $2z^2$ meters by $(2z + 1)$ meters
 c. $2z(4z + 2)$; possible dimensions: $2z$ meters by $(4z + 2)$ meters
 d. $2(2z + z)$; possible dimensions: 2 meters by $(2z + z)$ meters

6. Factor $5(x - 2) - 9x(x - 2)$.
 a. $-45x(x - 2)$
 b. $(x - 2)(9x - 5)$
 c. $(5 - 9x)(x - 2)(x - 2)$
 d. $(x - 2)(5 - 9x)$

7. Factor $x^2 + 101x + 100$.
 a. $(x + 101)(x + 100)$
 b. $(x + 2)(x + 50)$
 c. $(x + 5)(x + 20)$
 d. $(x + 1)(x + 100)$

8. Factor the trinomial $a^2 + 14a + 48$.
 a. $(a + 14)(a + 1)$
 b. $(a + 1)(a + 48)$
 c. $(a + 6)(a + 8)$
 d. $(a - 8)(a - 6)$

9. Factor the trinomial $r^2 + r - 20$.
 a. $(r - 4)(r + 5)$
 b. $(r - 5)(r - 4)$
 c. $(r + 1)(r - 20)$
 d. $(r - 1)(r - 20)$
10. Factor $x^2 + 20x + 36$. Check that the original polynomial and the factored form have the same values for $x = 0, 1, 2, 3, \text{ and } 4$.
 a. $(x + 20)(x + 36)$
 b. $(x + 10)(x + 10)$
 c. $(x + 4)(x + 9)$
 d. $(x + 2)(x + 18)$

11. Factor $3x^2 + 2x - 8$.
 a. $(x - 2)(3x + 4)$
 b. $(x + 2)(3x + 4)$
 c. $(x - 2)(3x - 4)$
 d. $(x + 2)(3x - 4)$

12. Factor $2x^2 + 7x + 6$.
 a. $(x + 3)(2x + 2)$
 b. $(x + 2)(2x - 3)$
 c. $(x + 2)(x + 3)$
 d. $(x + 2)(2x + 3)$

13. Find all possible values of b such that $4x^2 + bx + 3$ can be factored.
 a. 7, 8
 b. 7, 8, 13
 c. 7
 d. 8, 13

14. Determine whether $16x^2 - 24x + 9$ is a perfect square. If so, factor it. If not, explain why.
 a. Yes, $16x^2 - 24x + 9$ is a perfect square. $(16x - 9)^2$
 b. No, $16x^2 - 24x + 9$ is not a perfect square. $16x^2$ and 9 are perfect squares, but 24x is not a perfect square. So $16x^2 - 24x + 9$ is not a perfect square.
 c. Yes, $16x^2 - 24x + 9$ is a perfect square. $(4x + 3)^2$
 d. Yes, $16x^2 - 24x + 9$ is a perfect square. $(4x - 3)^2$

15. Tell whether the polynomial $6y^2(y^2 + 6y + 9)$ is completely factored. If not, factor it.
 a. Yes.
 b. No; $6y^2(y + 3)(y - 3)$.
 c. No; $6y^4 + 36y^3 + 54y^2$.
 d. No; $6y^2(y + 3)^2$.

16. Factor $27x^2z + 36xz + 12z$ completely.
 a. $z(3x + 12)^2$
 b. $3z(3x + 2)^2$
 c. $12z(2x^2 + 3x + 1)$
 d. $3z(3x + 2)(3x - 2)$

17. Write the polynomial in standard form. Then name the polynomial based on its degree and number of terms.
 $2 - 11x^2 - 8x + 6x^2$
 a. $-5x^2 - 8x + 2$; quadratic trinomial
 b. $5x^2 - 8x - 2$; quadratic trinomial
 c. $-6x^2 - 8x - 2$; cubic polynomial
 d. $6x^2 - 8x + 2$; cubic trinomial

18. Find the degree of the monomial.
 $7m^6n^5$
 a. 5
 b. 11
 c. 6
 d. 7

19. Match the expression with its name.
 $6x^3 - 9x + 3$
 a. cubic trinomial
 b. quadratic binomial
 c. fourth-degree monomial
 d. not a polynomial
20. Write the perimeter of the figure.

\[3x + 2 \quad 6x \quad 5x \]

not to scale

a. \(9x + 7x \)
 b. \(11x + 3x + 2 \)
 c. \(14x + 2 \)
 d. \(14x \)

Simplify the product.

21. \(2n(n^2 + 3n + 4) \)

a. \(2n^3 + 6n^2 + 8n \)
 b. \(2n^3 + 3n + 4 \)
 c. \(2n^3 + 6n + 8 \)
 d. \(n^2 + 5n + 4 \)

Factor the polynomial.

22. \(2x^3 + 4x^2 + 8x \)

a. \(2x(x^2 + 2x + 4) \)
 b. \(2x(x + 2)(x + 4) \)
 c. \(x(2x^2 + 4x + 8) \)
 d. \(2x^3 + 4x^2 + 8x \)

23. Find the GCF of the terms of the polynomial.

\(8x^6 + 32x^3 \)

a. \(x^3 \)
 b. \(8x^3 \)
 c. \(8x^3 \)
 d. \(8x^6 \)

Simplify the product using FOIL.

24. \((3x - 7)(3x - 5) \)

a. \(9x^2 - 21x + 35 \)
 b. \(9x^2 + 36x + 35 \)
 c. \(9x^2 - 36x - 35 \)
 d. \(9x^2 - 36x + 35 \)

Find the square.

25. \((2x - 6)^2 \)

a. \(4x^2 - 24x + 36 \)
 b. \(4x^2 - 8x + 36 \)
 c. \(4x^2 + 36 \)
 d. \(4x^2 - 12x + 36 \)
26. Find the area of the UNSHADED region. Write your answer in standard form.

a. \(-2x^2 + 10x + 25\)
b. \(x^2 + 8x + 25\)
c. \(10x + 25\)
d. \(x^2 + 10x + 25\)

Factor the expression.

27. \(w^2 + 18w + 77\)
 a. \((w - 7)(w + 11)\)
 b. \((w - 7)(w - 11)\)
 c. \((w + 7)(w + 11)\)
 d. \((w + 1)(w + 77)\)

28. \(d^2 + 10d + 9\)
 a. \((d + 9)(d - 1)\)
 b. \((d - 9)(d + 1)\)
 c. \((d - 9)(d - 1)\)
 d. \((d + 9)(d + 1)\)

29. \(x^2 - x - 42\)
 a. \((x - 7)(x + 6)\)
 b. \((x + 7)(x + 6)\)
 c. \((x + 7)(x - 6)\)
 d. \((x - 7)(x - 6)\)

30. \(d^2 - 14d + 49\)
 a. \((d + 7)^2\)
 b. \((d - 7)^2\)
 c. \((d - 7)(d + 7)\)
 d. \((d - 49)(d - 1)\)
Chapter 8: Factoring Polynomials—Review

Answer Section

MULTIPLE CHOICE

1. ANS: B
Choose a prime factor of 70 to begin. Keep dividing by prime factors until the quotient is 1.

<table>
<thead>
<tr>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Check your answer by multiplying the factors.</td>
</tr>
<tr>
<td>B Correct!</td>
</tr>
<tr>
<td>C Check your answer by multiplying the factors.</td>
</tr>
<tr>
<td>D Check your answer by multiplying the factors.</td>
</tr>
</tbody>
</table>

PTS: 1 DIF: Basic REF: Page 524 OBJ: 8-1.1 Writing Prime Factorization
NAT: 12.1.5.b TOP: 8-1 Factors and Greatest Common Factors
KEY: prime factorization | exponents

2. ANS: B
List all the factors of 48 and 72. Choose the greatest factor that is in both lists.

<table>
<thead>
<tr>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Check to see that this is a factor of both numbers. If so, check that it is the GREATEST common factor.</td>
</tr>
<tr>
<td>B Correct!</td>
</tr>
<tr>
<td>C Check that this is a factor of the greater number.</td>
</tr>
<tr>
<td>D This is the least common multiple (LCM) of the two numbers. Find the greatest common factor (GCF).</td>
</tr>
</tbody>
</table>

PTS: 1 DIF: Basic REF: Page 525 OBJ: 8-1.2 Finding the GCF of Numbers
NAT: 12.1.5.b TOP: 8-1 Factors and Greatest Common Factors
KEY: common factor | factor | GCF | greatest common factor

3. ANS: D
First, write the prime factorization of each coefficient and write the powers as products. Then, find the product of the common factors.

<table>
<thead>
<tr>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Find the GCF of the coefficients.</td>
</tr>
<tr>
<td>B Find the product of all the common factors.</td>
</tr>
<tr>
<td>C There are more factors in common.</td>
</tr>
<tr>
<td>D Correct!</td>
</tr>
</tbody>
</table>

PTS: 1 DIF: Average REF: Page 525
OBJ: 8-1.3 Finding the GCF of Monomials
NAT: 12.1.5.b
TOP: 8-1 Factors and Greatest Common Factors
4. ANS: B
First, find the GCF of the number of trombone players and the number of trumpet players. This is the number of musicians in each row.

Since the GCF of 24 and 56 is 8, there are 8 musicians in each row.

Divide to find the number of rows of trombone players: \(24 \div 8 = 3\).
Divide to find the number of rows of trombone players: \(56 \div 8 = 7\).

The total number of rows \(= 3 + 7 = 10\).

<table>
<thead>
<tr>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

PTS: 1 DIF: Average REF: Page 526 OBJ: 8-1.4 Application
NAT: 12.1.5.b STA: A.4.A TOP: 8-1 Factors and Greatest Common Factors
KEY: GCF | greatest common factor | factor

5. ANS: A
\[A = 4z^2 + 2z\]
The GCF is \(2z\).
\[A = 2z(2z) + 2z(1)\]
Write each term as a product with the GCF as a factor.
\[A = 2z(2z + 1)\]
Use the Distributive Property to factor out the GCF.

<table>
<thead>
<tr>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

PTS: 1 DIF: Average REF: Page 532 OBJ: 8-2.2 Application
NAT: 12.5.3.d STA: A.4.A TOP: 8-2 Factoring by GCF
6. ANS: D

\[5(x - 2) - 9x(x - 2) \]

The terms have a common binomial factor of \((x - 2)\).

Factor out \((x - 2)\).

\[(x - 2)(5 - 9x)\]

<table>
<thead>
<tr>
<th>Feedback</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Check the signs.</td>
</tr>
<tr>
<td>B</td>
<td>Check the order of the second factor terms.</td>
</tr>
<tr>
<td>C</td>
<td>The common factor should appear only once.</td>
</tr>
<tr>
<td>D</td>
<td>Correct!</td>
</tr>
</tbody>
</table>

PTS: 1 DIF: Basic REF: Page 533
OBJ: 8-2.3 Factoring Out a Common Binomial Factor NAT: 12.5.3.d
TOP: 8-2 Factoring by GCF

7. ANS: D

The factors of \(x^2 + 101x + 100\) are binomials.

Use FOIL as a guide (First, Outer, Inner, Last) to find the binomial factors.

The first terms multiply to \(x^2\).

\[(x + ?)(x + ?) = x^2\]

The last terms multiply to 100. Check each pair of factors of 100 to find the inner and outer products that add to the middle term 101x.

\[
\begin{align*}
(x + 1)(x + 100) & = x^2 + 101x + 100 \\
(x + 2)(x + 50) & = x^2 + 52x + 100 \\
(x + 4)(x + 25) & = x^2 + 29x + 100 \\
(x + 5)(x + 20) & = x^2 + 25x + 100 \\
(x + 10)(x + 10) & = x^2 + 20x + 100
\end{align*}
\]

The only factors of that 100 produce the correct middle term are 1 and 100.

\[x^2 + 101x + 100 = (x + 1)(x + 100)\]

<table>
<thead>
<tr>
<th>Feedback</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Use factors of the constant term. The coefficient of the (x) term is the sum of the inner and outer products.</td>
</tr>
<tr>
<td>B</td>
<td>Check the factors. The coefficient of the (x) term is the sum of the inner and outer products.</td>
</tr>
<tr>
<td>C</td>
<td>Check the factors. The coefficient of the (x) term is the sum of the inner and outer products.</td>
</tr>
<tr>
<td>D</td>
<td>Correct!</td>
</tr>
</tbody>
</table>

PTS: 1 DIF: Average REF: Page 540
OBJ: 8-3.1 Factoring Trinomials by Guess and Check NAT: 12.5.3.d
TOP: 8-3 Factoring \(x^2 + bx + c\)
8. ANS: C

\[a^2 + 14a + 48 \]

\[(a + ?)(a + ?) \]

\[(a + 6)(a + 8) \]

Look for the factors of 48 whose sum is 14.

The factors are 6 and 8.

<table>
<thead>
<tr>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Look for factors whose product is the trinomial's last term.</td>
</tr>
<tr>
<td>B Use the FOIL method to check your answer.</td>
</tr>
<tr>
<td>C Correct!</td>
</tr>
<tr>
<td>D Use the FOIL method to check your answer.</td>
</tr>
</tbody>
</table>

PTS: 1 DIF: Basic REF: Page 541
OBJ: 8-3.2 Factoring \(x^2 + bx + c\) When \(c\) is Positive NAT: 12.5.3.d

9. ANS: A

\[r^2 + r - 20 \]

\[(r + ?)(r + ?) \]

\[(r - 4)(r + 5) \]

Look for the factors of \(-20\) whose sum is 1.

The factors are \(-4\) and 5.

<table>
<thead>
<tr>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Correct!</td>
</tr>
<tr>
<td>B Use the FOIL method to check your answer.</td>
</tr>
<tr>
<td>C Use the FOIL method to check your answer.</td>
</tr>
<tr>
<td>D Check the signs.</td>
</tr>
</tbody>
</table>

PTS: 1 DIF: Basic REF: Page 542
OBJ: 8-3.3 Factoring \(x^2 + bx + c\) When \(c\) is Negative NAT: 12.5.3.d

TOP: 8-3 Factoring \(x^2 + bx + c\)
10. ANS: D

\[x^2 + 20x + 36 \]

Look for factors of 36 whose sum is 20.

\[(x + 2)(x + 18) \]

The factors needed are 2 and 18.

Evaluate the original polynomial \(x^2 + 20x + 36 \) and the factored form \((x + 2)(x + 18)\) for \(x = 0, 1, 2, 3,\) and 4.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(x^2 + 20x + 36)</th>
<th>(x)</th>
<th>((x + 2)(x + 18))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0^2 + 20(0) + 36 = 36</td>
<td>0</td>
<td>(0 + 2)(0 + 18) = 36</td>
</tr>
<tr>
<td>1</td>
<td>1^2 + 20(1) + 36 = 57</td>
<td>1</td>
<td>(1 + 2)(1 + 18) = 57</td>
</tr>
<tr>
<td>2</td>
<td>2^2 + 20(2) + 36 = 80</td>
<td>2</td>
<td>(2 + 2)(2 + 18) = 80</td>
</tr>
<tr>
<td>3</td>
<td>3^2 + 20(3) + 36 = 105</td>
<td>3</td>
<td>(3 + 2)(3 + 18) = 105</td>
</tr>
<tr>
<td>4</td>
<td>4^2 + 20(4) + 36 = 132</td>
<td>4</td>
<td>(4 + 2)(4 + 18) = 132</td>
</tr>
</tbody>
</table>

The original polynomial and the factored form have the same value for the given values of \(x\). This is a way to verify that \(x^2 + 20x + 36 = (x + 2)(x + 18)\).

Feedback

A Multiply the binomials to check your answer.
B Look for factors of 36 whose sum is 20.
C Look for factors of 36 whose sum is 20.
D Correct!

PTS: 1 DIF: Average REF: Page 543 OBJ: 8-3.4 Evaluating Polynomials
NAT: 12.5.3.d TOP: 8-3 Factoring \(x^2 + bx + c\)

11. ANS: D

Try factors of 3 for the coefficients and factors of -8 for the constant terms.
The combination that works is:

\[(x + 2)(3x - 4) = 3x^2 - 4x + 6x - 8 = 3x^2 + 2x - 8\]

Feedback

A Multiply the factors to check your answer.
B Check the signs.
C Multiply the factors to check your answer.
D Correct!

PTS: 1 DIF: Basic REF: Page 548
OBJ: 8-4.1 Factoring \(ax^2 + bx + c\) by Guess and Check NAT: 12.5.3.d
TOP: 8-4 Factoring \(ax^2 + bx + c\) KEY: factor | trinomial | guess and check
12. ANS: D
Since $a = 2$, the coefficients of the First terms must be factors of 2.
Since $c = 6$, the Last terms must be factors of 6.
Since $b = 7$, the Outer and Inner products must add up to 7.
The sum of the products of the outer and inner terms should be 7.
It may be helpful to make a table to check all the factors of 2 and all the factors of 6. Then check the products of the outer and inner terms to see if the sum is 7.

<table>
<thead>
<tr>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>A You reversed the second terms in the parentheses.</td>
</tr>
<tr>
<td>B When b is negative, the factors of c are both negative. When b is positive, the factors of c are both positive.</td>
</tr>
<tr>
<td>C The coefficient of the x-term in the second binomial cannot be 1. Check your answer.</td>
</tr>
<tr>
<td>D Correct!</td>
</tr>
</tbody>
</table>

PTS: 1 DIF: Basic REF: Page 549
OBJ: 8-4.2 Factoring $ax^2 + bx + c$ When c is Positive NAT: 12.5.3.d
TOP: 8-4 Factoring $ax^2 + bx + c$

13. ANS: B
Find all possible combinations of the factors of $4x^2$ and 3.

<table>
<thead>
<tr>
<th>Factors of $4x^2$</th>
<th>Factors of 3</th>
<th>$b = 4 + 3 = 7$</th>
<th>$b = 12 + 1 = 13$</th>
<th>$b = 2 + 6 = 8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4x$ and x</td>
<td>3 and 1</td>
<td>$(4x + 3)(x + 1)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$4x$ and x</td>
<td>1 and 3</td>
<td>$(4x + 1)(x + 3)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2x$ and $2x$</td>
<td>3 and 1</td>
<td>$(2x + 3)(2x + 1)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The possible values of b are 7, 8, and 13.

<table>
<thead>
<tr>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>A There are more possible values.</td>
</tr>
<tr>
<td>B Correct!</td>
</tr>
<tr>
<td>C There are more possible values.</td>
</tr>
<tr>
<td>D Find all possible combinations of the factors of $4x^2$ and 3.</td>
</tr>
</tbody>
</table>

PTS: 1 DIF: Advanced TOP: 8-4 Factoring $ax^2 + bx + c$
14. ANS: D

$16x^2 - 24x + 9$ is a perfect square if:
* The first and last terms are perfect squares.
* The middle term is two times the square root of the first term and the square root of the last term.

<table>
<thead>
<tr>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

PTS: 1 DIF: Average REF: Page 558
OBJ: 8-5.1 Recognizing and Factoring the Perfect-Square Trinomials
NAT: 12.5.3.d TOP: 8-5 Factoring Special Products

15. ANS: D

The factor $(y^2 + 6y + 9)$ is a perfect square trinomial and can be factored.

<table>
<thead>
<tr>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

PTS: 1 DIF: Advanced REF: Page 566
OBJ: 8-6.1 Determining Whether a Polynomial is Completely Factored
NAT: 12.5.3.d TOP: 8-6 Choosing a Factoring Method

16. ANS: B

Factor out the GCF, $3z$. The remaining polynomial, $9x^2 + 12x + 4$, is a perfect square trinomial that can be factored.

<table>
<thead>
<tr>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

PTS: 1 DIF: Advanced REF: Page 567
OBJ: 8-6.2 Factoring by GCF and Recognizing Patterns
NAT: 12.5.3.d TOP: 8-6 Choosing a Factoring Method

17. ANS: A

PTS: 1 DIF: L3
REF: 9-1 Adding and Subtracting Polynomials
OBJ: 9-1.1 Describing Polynomials
NAT: NAEP 2005 A3b | ADP J.1.3 STA: TX TEKS A.3A | TX TEKS A.4A
TOP: 9-1 Example 2
KEY: monomial | degree of a monomial | polynomial | degree of a polynomial | standard form of a polynomial | trinomial | classifying polynomials | multi-part question
28. ANS: D PTS: 1 DIF: L3
REF: 9-5 Factoring Trinomials of the Type $x^2 + bx + c$ OBJ: 9-5.1 Factoring Trinomials
NAT: NAEP 2005 A3c | ADP J.1.4 STA: TX TEKS A.4A
TOP: 9-5 Example 1 KEY: polynomial | factoring trinomials

29. ANS: A PTS: 1 DIF: L3
REF: 9-5 Factoring Trinomials of the Type $x^2 + bx + c$ OBJ: 9-5.1 Factoring Trinomials
NAT: NAEP 2005 A3c | ADP J.1.4 STA: TX TEKS A.4A
TOP: 9-5 Example 3 KEY: polynomial | factoring trinomials

30. ANS: B PTS: 1 DIF: L2 REF: 9-7 Factoring Special Cases
OBJ: 9-7.1 Factoring Perfect-Square Trinomials NAT: ADP J.1.4
STA: TX TEKS A.4A TOP: 9-7 Example 1
KEY: polynomial | factoring trinomials | perfect-square trinomial